BlueGene/L System and Network Introduction

BlueGene/L Application Workshop Katherine M Riley July 27, 2005 Argonne National Lab

Intent

A quick overview of the BlueGene/L system and networking with the target of aiding porting and optimizations

Idea Behind Design

- Massively parallel system
- Enough CPUS, must increase power efficiency
- Less individual CPU punch, cumulative a lot of punch
- More CPUs, so need a scalable network

Blue Gene System

CPU Information

- Two Processors per node
 - o no SIMD between CPUs
 - Unsafe dual-proc programming model
 - Double FPU (double hummer)
- @ 32 bit architecture, 700 MHz

Memory

L1 Cache	32Kb, 32-byte line size
L2 Cache/Prefetch/ Buffer	16 128-byte lines
L3 Cache	4 MB ~35 cycle latency
Main Memory	512 MB DDR @ 350 MHz ~85 cycle latency

Compute Node Kernel

- Very small linux kernel on each CPU

 - Less functionality
- Almost no noise
 - Excellent reproducable timings
 - Aids performance of global operations

Networks

- 3D Torus : point to point
 - Mesh with periodic boundaries
 - 1μs 5μs latency, 1.4GB/s
- Global Tree: one to all
 - 2.5μs one way, 2.8GB/s per link
- Low Latency Barrier/Interrupt
- Ethernet and Control Network

Using the System

- Cross Compiling
 - Front end nodes compile for CNKs
 - No shell access to CNKs
- Executable loaded to PARTITION
 - Power of 2 in size

On the System

- IBM XL Compiler
- **O** GNU C
- Developing collection of libraries
 - Math libraries
 - IO (pnetcdf, hdf5)

Running Jobs

- No dynamic libraries
- No threads
- Single executable per partition
- Coprocessor or Virtual node mode
 - Coprocessor: 1 CPU for communication
 - Virtual Node mode: both to compute
- Running:

```
mpirun -partition ANL_R001 -np 8 -cwd `pwd` -exe `pwd`/myJob
cqsub -t 60 -n 32 -m co `pwd`/myJob -env "BGLMPI_ALLREDUCE=MPICH"
```

Controlling the Network

- Can decide what network MPI routines use
 - -env 'BGLMPI_ALLREDUCE=TORUS'
- Dictate shape of partition
 - -shape NxNxN
- Dictate mapping of process
 - -env BGLMPI_MAPPING=TXYZ/XYZT
 - -mapfile filename

Things that are Different

- No dynamic libraries
- No threads
- Single executable
- Fixed Partition Size
- Generally smaller memory size